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Abstract

This investigation evaluates the energy consumption of 
an electric vehicle (EV) and identifies key factors that 
affect its energy efficiency, based on real-world operation 

for a range of driving characteristics and climate conditions 
over nearly four years in the streets of the second-largest UK 
city. The driving modes investigated were acceleration, decelera-
tion, idling and cruise, determined by dividing each individual 
trip into kinematic segments based on vehicle speed and accel-
eration calculated second by second. From the results obtained, 
the EV energy consumption is directly influenced by changes 
in ambient temperature outside, largely due to the corre-
sponding loads required from the use of auxiliary systems, 
mainly heating and air conditioning. An increase in trip idling 

events directly translates to a rise in EV energy consumption, 
while opposite outcomes were produced during cruising state 
with decreasing energy consumption. During the periods of 
high traffic on weekdays, the energy consumption is increased 
by nearly 15% as a direct impact of the increase in the number 
of stops, as the auxiliaries still require energy while the vehicle 
is at idle. The difference in energy consumption between 
weekday and weekend driving occurs mainly during heavy 
traffic periods, increasing by 20% on weekdays, primarily due 
to the rise in the number of stops for weekday driving. The 
results also show that the EV specific energy consumption 
varies each month, reaching a 55% increase from summer of 
least energy consumption to winter with the most requires 
energy, mainly due to large average ambient temperature changes.

Introduction

The transportation sector is the largest contributor to 
greenhouse gas (GHG) emissions, and vehicles exhaust 
emissions are the primary source of air pollution, 

particularly in dense populations [1]. In 2040, the number of 
passenger vehicles is expected to double, reaching 2 billion 
vehicles worldwide, and without alternatives to fossil fuels as 
an energy source, it will eventually lead to an increase in trans-
portation sector emissions share [2]. One of the solutions to 
decarbonise the transport sector is to shift from internal 
combustion engine (ICE) vehicles to electric vehicles (EVs) 
[3]. Therefore, several governing bodies have developed strate-
gies to reduce transportation sector GHG emissions through 
a set of targets, incentives and purchasing subsidies [4].

While EVs have many advantages, some limitations 
withheld their mass adoption. For example, range anxiety is 
perhaps the main obstacle for accepting EVs in the market [5]. 
A survey in the United Kingdom (UK) identified concerns 
about the impact of driving behaviour and the use of vehicle 
features on the range as one of several barriers to increasing 
the uptake of EVs [6]. These limitations are directly related to 
the energy consumption of EVs and highlight the importance 
of a better understanding of factors that influence their range. 

The analysis of real-world data from EVs offers valuable infor-
mation for the development of electric powertrain optimisa-
tion models [7] and prediction methods [8] to improve effi-
ciency and provide solutions to reduce energy consumption 
and costs. Furthermore, the anticipated increase in EVs 
requires optimising charging infrastructure through foresee 
charging demand and requirements [9]. Analysis of EV 
driving behaviour alongside charging patterns provides 
valuable information on the development of charging infra-
structure in small and medium-sized cities [10].

Several studies covered the impact of traffic, driving style, 
route and elevation on energy consumption but these studies 
primarily focused on ICE vehicles [11]. However, traditional 
driving cycles might not be adequate to evaluate and improve 
EVs as they have been developed based on conventional 
vehicles driving characteristics, which are considered different 
from EVs [12]. The estimated EV driving range from six legis-
lative driving cycles differs by 20% to 38% compared to the 
one obtained from a constructed urban driving cycle for a city 
in China based on actual driving data [13]. Data from real-
world driving tests of EV in India showed that energy 
consumption is higher than the dynamometer laboratory test 
by 42 to 90% affected by changes in traffic congestion 
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to a 55% increase from summer (June, July and August) to 
winter (December, January and February) months. The meth-
odology here employed can be applied in future studies to 
evaluate the SEC of HEV, especially plug-in hybrid electric 
vehicles (PHEV), which larger batteries allow driving in 
electric mode for longer periods.

Factors Correlation
Figure 9 shows the correlation coefficient matrix between 
different factors determined using the Pearson correlation 
coefficient (PCC) method. The more intense the colour, the 
higher the correlation between the two variables. The PCC 
ranges from -1 to 1, a value equal to zero indicates no correla-
tion, while the higher the absolute value, the stronger the 
correlation between the two factors [27]. The strong positive 
correlations between distance, average speed and cruising 
state show that cruising events increases with longer trips. 
These trips would typically have a higher percentage of 
motorway driving, as indicated by the increase in average 
speed with an increase in trip distance.

The correlation between the four driving states in the 
lower-left corner shows a high correlation between 

acceleration and deceleration states, while the cruising state 
only correlates with the idling state. Unlike the other states, 
the Idling state has a high correlation with all other states 
emphasizing the high inf luence of idling as previously 
discussed, which indicates that the idling state would be a 
good representative to measure the impact of driving mode 
on SEC. The negative correlation between average speed and 
stops per km or idling state highlights the traffic behaviour 
during rush hours as trips with high idling events (repeated 
stops with long idling periods) will increase the trip duration, 
decreasing the calculated average speed.

Conclusions
The energy consumption of an EV was evaluated using real-
world driving data collected in Birmingham, one of the UK’s 
largest cities. In general, the highest variation and highest 
values of specific energy consumption were observed for short 
trips. The difference in energy consumption between weekday 
and weekend driving occurs mainly in heavy traffic periods, 
primarily due to the increased number of stops. Depending 
on the use of auxiliaries, the number of stops and idling state 
share in a trip can significantly influence the specific energy 
consumption. From the factors investigated, ambient tempera-
ture outside alongside trips with a large share of idling events 
has the highest impact on the SEC of an EV depending on the 
increase of load from auxiliaries. Months with moderate 
temperature showed a small variation in specific energy 
consumption, while months with an average temperature 
below 15°C showed a significant increase in energy consump-
tion, which is linked to the use of auxiliaries. The increase in 
specific energy consumption reaches 55% from the summer 
to winter.
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Definitions/Abbreviations
CAN - Controller Area Network
EV - Electric Vehicle
GHG - Greenhouse Gas
HEV - Hybrid Electric Vehicle
ICE - Internal Combustion Engine
PCC - Pearson Correlation Coefficient
PHEV - Plug-in Hybrid Electric Vehicle
SEC - Specific Energy Consumption
UK - United Kingdom


