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Abstract

Software simulation tools for vehicle fuel economy/
energy efficiency can play an important role in strategic 
decisions about advanced powertrains. One such tool 

that has been developed by the National Renewable Energy 
Laboratory (NREL) is known as FASTSim. The philosophy of 
FASTSim aims to strike a difficult balance between simpli-
fying the task of creating/editing vehicle models, fast compu-
tation time and high-fidelity simulation results. In the 
“baseline” version of FASTSim, which is open-source and 
freely available in Python or Excel, the instantaneous effi-
ciency of an engine, motor or fuel cell is estimated via refer-
ence curves as function of power demand. The reference effi-
ciency curve for each powertrain subsystem (e.g. for a spark-
ignition engine) in baseline FASTSim has the same profile 
irrespective of what vehicle is being modelled, which is a 

compromise in accuracy in favor of ease of modeling. This 
paper utilizes an open-source Java implementation of 
FASTSim with capability for custom efficiency curves for 
engine and motor, along with a large dataset of real-world 
vehicle trips to calibrate and validate FASTSim vehicle models 
for three Battery Electric Vehicles (BEVs), four Plug-in Hybrid 
Electric Vehicles (PHEVs), one non-plug-in Hybrid Electric 
Vehicle (HEV) and one conventional internal combustion 
engine (ICE) vehicle. An ultimate goal in vehicle modeling, 
is for the simulation results to closely match the real-world 
trip data for every trip, but such a goal is difficult due to many 
uncertainties in real-world trips. Instead, results show that it 
is possible to achieve high fidelity for an aggregate of several 
trips, and the modeling fidelity improves with less uncertainty 
in trips information, such as when road slope and cabin 
heating/cooling loads are known.

Introduction

A wide variety of approaches and software tools exist for 
modeling of vehicle fuel economy/energy efficiency. 
From a categorical [1] standpoint, it may be useful to 

distinguish between approaches that attempt to model and 
replicate the performance of individual powertrain compo-
nents, also referred to as physics-based approaches (or ‘White 
box” in [1]), empirical approaches that are primarily data-infer-
ence based (referred to as “Black box” in [1]), and hybrid 
approaches or “Gray box” [1], which attempt to combine traits 
of both physics-based and data inference approaches. Black-box 
models have the advantage in being grounded to real-world 
data when estimating average vehicle performance across many 
owners, however, such models may be  less accurate when 
considering unconventional cases that are off the typical norm. 
Moreover, real-world data for calibration of such models often 

lags by up to a few years. A simple and commonly used example 
black-box model is the US Environmental Protection Agency 
(EPA) fuel economy labels [2], where the fuel economy of a 
vehicle can be one of three numbers corresponding to “city”-like 
driving, “highway”-like driving or “combined”. Other black-
box type models in utilization by US government agencies 
include MOVES [3] and EMFAC [4]. Among several physics-
based models for vehicle fuel economy simulation, two of which 
are endorsed by the US Department of Energy [5]; Autonomie 
[6] and FASTSim [7], both of which have been utilized in peer-
reviewed work in the literature [8-13]. Furthermore, both
Autonomie and FASTSim have been utilized in studies/reports
that aim to gauge/shape the future of transportation in the US
[14-16]. With such an important topic in discussion, it is benefi-
cial to continuously conduct assessments and validation of the 
fuel economy simulation models.
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exception of Pacifica Hybrid, where they are mostly similar). 
This is perceived to attest to the importance of including road 
slope and HVAC power within simulations when such infor-
mation is available.

Conclusion & Future Work
This paper presented an extension of previous work that aimed 
at improving the fidelity of energy efficiency/fuel economy 
simulation results of FASTSim via a two-stage model tuning 
process, with the first stage focusing on adjusting the physical 
parameters of vehicle model (including custom efficiency 
curves for engine and motor), and the second stage focusing 
on tuning of energy adjustment parameters that aim to 
account for uncertainties in real-world driving. Tuned 
FASTSim vehicle models were generated for nine light-duty 
vehicles were generated including three BEVs, four PHEVs, 
one HEV and one conventional ICE. Where feasible, up to 
three variants of the tuned models were generated depending 
on whether the available information in the real-world trips 
to be simulated includes only the vehicle speed, speed and 
road slope, or speed, road slope and HVAC power. Verification 
test simulations of the tuned models attained average relative 
error in trip energy estimation within ±1.5% when road slope 
information is included, and within ±4% when neither road 
slope nor HVAC power information are included. Future 
extensions of this work may include repeating the study on a 
larger scale (more vehicle models, more vehicles and trips per 
vehicle model), and/or consideration for automation proce-
dures for optimal tuning of the custom-curves and other 
tuning parameters.
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