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Abstract

In the development of multi-disciplinary systems, many 
experts in different discipline fields need to collaborate 
with each other to identify a feasible design where all multi-

disciplinary constraints are satisfied. This paper proposes a 
novel data-driven set-based concurrent engineering method 
for multidisciplinary design optimization problems by using 
machine learning techniques. The proposed set-based concur-
rent engineering method has two advantages in the concurrent 
engineering process. The first advantage is the decoupling 
ability of multidisciplinary design optimization problems. By 
introducing the probabilistic representation of multidisci-
plinary constraint functions, feasible regions of each discipline 

sub-problem can be decoupled by the rule of product. The 
second advantage is an efficient concurrent study to explore 
feasible regions. A batch sampling strategy is introduced to 
find feasible regions based on Bayesian Active Learning (BAL). 
In the batch BAL, Gaussian Process models of each multi-
disciplinary constraint are trained. Based on the posterior 
distributions of trained Gaussian Process models, an acquisi-
tion functions that combine Probability of Feasibility and 
Entropy Search are evaluated. In order to generate new 
sampling points in and around feasible regions, optimization 
problems to maximize the acquisition function are solved by 
assuming that the constraint function is Lipschitz continuous. 
To show the effectiveness of the proposed method, a practical 
numerical example of a multi-disciplinary vehicle design 
problem is demonstrated.

Introduction

With advancement and divergence in vehicle tech-
nology, the vehicle design process is becoming 
more complex. Following future market demands 

for vehicle technologies such as connectivity, autonomy, 
sharing, and electronic mobility, increases the complexity of 
vehicle development. To develop a complex system which has 
a multi-disciplinary and hierarchical structure, many experts 
in different discipline fields need to collaborate with each 
other. In the design process, concurrent engineering (CE) 
[1,2], also known as simultaneous engineering, is an efficient 
work methodology emphasizing the parallelization of tasks. 
Based on the CE, development term and costs can be reduced. 
In this paper, we propose a data-driven set-based concurrent 
engineering method which can solve the multidisciplinary 
design optimization problem concurrently using machine 
learning.

In order to solve multi-disciplinary system development 
concurrently, it is required to set appropriate design targets 
that satisfy all requirements of discipline sub-problems. The 
development flow of a complex system which has a multi-
disciplinary and hierarchical structure can be described by 
the V-model, which is a way to graphically represent a system 
development method as shown in Figure 1. In this figure, the 
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 FIGURE 1  V- model of a complex system which has multi-
disciplinary and hierarchical structure. The left side depicts the 
decomposition of multi requirements and the creation of 
system specifications. The right side represents the integration 
of parts and their validation. In the top-left stage, it is required 
to set robust design targets considering design uncertainty.
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constraint function is Lipschitz continuous. To show the effec-
tiveness of the proposed method, a practical numerical 
example of a multi-disciplinary vehicle design problem 
was demonstrated.
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