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Abstract

This paper benchmarks three different lithium-ion (Li-ion) 
battery voltage modelling approaches, a physics-based 
approach using an Extended Single Particle Model 

(ESPM), an equivalent circuit model, and a recurrent neural 
network. The ESPM is the selected physics-based approach 
because it offers similar complexity and computational load to 
the other two benchmarked models. In the ESPM, the anode 
and cathode are simplified to single particles, and the partial 
differential equations are simplified to ordinary differential 
equations via model order reduction. Hence, the required state 
variables are reduced, and the simulation speed is improved. 
The second approach is a third-order equivalent circuit model 
(ECM), and the third approach uses a model based on a Long 

Short-Term Memory Recurrent Neural Network (LSTM-RNN)). 
A Li-ion pouch cell with 47 Ah nominal capacity is used to 
parameterize all the models. The models are tested and 
compared using four standard drive cycles at six ambient 
temperatures ranging from -200C to 40 0C. The proposed models 
are benchmarked using various qualitative and quantitative 
means including, accuracy, engineering effort to parametrize 
and create the model, and the ability of each model to represent 
the nonlinear behavior of the battery. The comparison between 
the three models shows that the ECM and the LSTM models 
have better accuracy than the ESPM. However, the ESPM 
requires a reduced set of calibration data, is highly capable of 
incorporating the complex nonlinear behavior of the battery, 
and the parameters have physical meaning.

1. Introduction

With the global transition to clean energies, lith-
ium-ion batteries have been widely used in 
electric vehicles and energy storage devices [1]. 

The advantages of lithium-ion batteries are high-energy, 
high-power densities, long life, low self-discharge, and less 
energy loss in charge and discharge. On the other hand, the 
batteries are still delicate and must be kept within safe envi-
ronmental and operating conditions. Lithium-ion cells with 
high Ni contents (such as NCM811, NCMA) are more prone 
to thermal reactivity and exothermic decomposition [2]. 
The working temperature of these batteries needs to be kept 

in a safe range, such as +10°C to +35°C. Meanwhile, to 
maintain long life and high efficiency, health of the batteries 
needs to be closely monitored. These requirements show the 
importance of the battery management systems (BMS) 
which ensure the safety and reliability of battery packs [3]. 
Inside the BMS, battery models are used for SOC and SOH 
estimation and are a key piece to ensure the proper func-
tioning of the system. Many different types of models and 
algorithms have been investigated in prior research, 
including equivalent circuit models [4-6], electrochemical 
models [8, 10-13], and artificial intelligence data-driven 
approaches [14, 17].
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A qualitative and quantitative comparison of the results 
for each method is given in Table 4. This table shows the ECM 
has the benefit of having low computation effort to fit the model 
parameters to the parametrization test, and that the model 
parameters have some physical meaning, and that it is reason-
ably good at capturing the nonlinear characteristics of the 
battery. The LSTM in comparison has the benefits of requiring 
less engineering effort to create the model and being able to 
better fit the behavioral characteristics of the battery, while it 
has the downside of the model parameters not having any 
physical meaning. The ESPM models requires less data to 
parameterize than the LSTM but more calibration efforts, since 
three sets of dedicated tests are needed. In the case of electro-
chemical models, more complex equations need to be intro-
duced if accurate results are needed in extreme conditions, 
such as at high C-rate or in the low temperature areas. On the 
other hand, it is worth noting that the ESPM model utilizes 
considerably fewer parameters than the other two models.

5. Conclusions
In this work three approaches to modelling lithium-ion 
batteries were presented and compared. The first was a third-
order ECM including nonlinear resistance, the second was 
recurrent neural network machine learning approach with an 
LSTM. The third one was the ESPM model. Quadratic 
programming was used to fit the ECM to HPPC test data. The 
learnable model parameters for the LSTM were determined 
by training it with data from eight mixed drive cycles 
performed at six different temperatures. The ESPM model was 
parameterized using the GITT, capacity and HPPC tests. The 
three proposed models were then tested at each temperature 
with four standard automotive drive cycles. The models 
performed similarly for the four cycles at positive tempera-
tures. The difference in the models’ performances started to 
increase at low temperatures, among which ESPM, in this 
study, shows worse performance than the other two. It is worth 
mentioning that, however, ESPM does have the potential 
benefits that the other two do not have, which is that the 
physics-based nature of this model lends itself to the integra-
tion of first-principle models describing degradation mecha-
nisms (for instance, SEI layer growth and lithium plating).

Future work will focus on expanding the study to include 
aging models (both physics-based and data-driven) and 
comparing the ability of the three modeling approaches to 
predict capacity fade.
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Nomenclature
as - solid/electrolyte interfacial area per unit volume or active 
surface area per electrode unit volume for electron transfer 
reactions [1/cm]
A - area [m2]
cp - specific heat capacity [J/kg°C]


